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Abstract—Edge-supported industrial Internet of Things (IIoT)
has recently received significant attention since the edge com-
puting can greatly improve the service quality of IIoT appli-
cations. However, edge servers are not fully trusted and are
often deployed at the edge of the network. Therefore, there
are some security issues. For edge-supported IIoT, privacy-
preserving range query is one of the most important functional
requirements. Recently, some privacy-preserving range query
solutions have been proposed in different fields. However, most
of them only support single-dimensional range query, which are
inefficient for the requirement of multi-dimensional range query.
To address these problems, we propose a privacy-preserving
multi-dimensional range query scheme for edge-supported IIoT,
called Edge-PPMRQ, in this paper. In Edge-PPMRQ, a novel
range division algorithm is designed, through which the multi-
dimensional ranges can be merged into one range, so as to achieve
multi-dimensional range query through one query request. In
addition, Edge-PPMRQ also supports the range queries for
continuous, discontinuous and arbitrary boundary ranges. The
detailed security analysis proves that Edge-PPMRQ is privacy-
preserving for the query ranges, the query result and the
sensed data of IIoT devices. Furthermore, extensive comparison
experiments also illustrate that Edge-PPMRQ is efficient in
communication and computation.

Index Terms—Range query, multi-dimensional, privacy-
preserving, industrial Internet of Things (IIoT), edge computing.

I. INTRODUCTION

With the significant advances of information technology,
Internet of Things (IoT) [1, 2] has been widely applied in
different fields, e.g., smart grids, intelligent parking and smart
homes, which makes our daily lives much more convenient.
Especially, with the applications of IoT in industrial fields, the
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so-called Industrial Internet of Things (IIoT) [3] has emerged,
which can greatly improve work efficiency and reduce resource
consumption. As an emerging computing technology, edge
computing [4] can store and process data near the IIoT
devices, so it can not only greatly reduce the communication
load and computational cost of IIoT devices to extend their
life cycle, but also achieve almost real-time data processing.
Therefore, edge computing is very suitable for supporting IIoT
applications. In edge-supported IIoT, a large number of sensors
are deployed in industrial environment to collect different
types of real-time data, and the edge server is capable to
receive and process the sensed data of IIoT sensors locally.
The results of data processing can help the industrial devices
make precise decision, which can evidently improve the work
efficiency and reliability of industrial devices.

For edge-supported IIoT applications, range query is one
of the most significant functional requirements. For example,
in a factory, different types of industrial sensors are deployed
to collect real-time environment data, such as water volume,
power consumption, pressure and temperature. Based on the
number of sensors whose sensed data exceeds the threshold
values, the manager of the factory can determine whether
water volume and temperature value are in normal ranges or
not. In IIoT environment, various types of data are generated.
To query different types of data, a single-dimensional range
query scheme is inefficient since it needs to send multiple
query requests, while a multi-dimensional range query scheme
can achieve the same purpose by only one request. Therefore,
in such scenario, a multi-dimensional range query scheme can
play a more important role than a single-dimensional solution.
At the same time, in range query, privacy preservation [5] is
a critical problem. Some adversaries may try to get the query
range and the sensed data of the factory, and further infer the
secret information. For example, if the sensor data generated
in the production environment is obtained by a competitor,
e.g., temperature, humidity, and material consumption, the
competitor can easily refer important information about the
production technology directly or indirectly, which is likely
to bring huge economic losses to the factory. In other words,
privacy-preserving multi-dimensioanl range query scheme is
considerably meaningful for edge-supported IIoT.

A. Related Work

In recent years, many privacy-preserving range query solu-
tions have been proposed in different fields, e.g., wireless sen-
sor networks (WSN) [6–9], cloud computing [10–13] and IoT
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[14–19]. In WSN, Yi et al. [6] proposed an efficient scheme
to process range queries in two-tier sensor networks, which
supports the functions of privacy and integrity preservation.
However, it cannot support discontinuous range query. Tsou et
al. [7] proposed an efficient and secure anonymous range query
scheme for two-tier WSN. The scheme can not only prevent
privacy leakage, but also detect the storage nodes which are
compromised by attackers. Moreover, the privileges of querists
can be verified without revealing their identities. However, the
scheme cannot achieve multi-dimensional range query. Zeng
et al. [8] proposed an energy-efficient range query scheme in
2017, which supports multi-dimensional range query, while
the sum function of the sensed data in query ranges cannot be
obtained by the query user. Liu et al. [9] designed a spatial
range aggregation query scheme for dynamic sensor networks
supporting privacy-preserving. In cloud computing, Li et al.
[10] proposed a range query protocol in cloud based on PBtree
data structure. It not only achieves strong privacy-preserving,
but also supports real-time queries. Xu et al. [11] designed a
lightweight range query scheme supporting both single- and
multi-dimensional range queries. Besides, it can protect the
data privacy and integrity of the query results. Li et al. [12]
proposed a secure scheme of multi-dimensional range query.
It not only achieves sub-linear search efficiency, but also is
secure in known-background model. Liang et al. [13] designed
a multi-source scheme with order-preserving encryption for
eHealth systems, which supports range queries for different
patients. In IoT applications, Li et al. [14] proposed a multi-
attribute aggregation query mechanism in the context of edge
computing, where an energy-aware IR-tree is constructed
to process query requests in a single edge network, and a
routing graph of edge nodes is established to facilitate query
processing for marginal smart devices contained in contiguous
edge networks. Djellabi et al. [15] proposed a scheme for
efficient range queries in IoT. It adopts a data distribution
model based on both consistent and order-preserving hash to
efficiently handle the range queries. Wan et al. [16] proposed a
multi-dimensional data indexing scheme, which is energy- and
time-efficient. Mahdikhani et al. [17] presented an efficient and
privacy preservation single-dimensional range query scheme,
which achieves (n+ |E|) · logn-bit communication efficiency.
However, a query user must launch multiple query requests
to realize the query for multi-dimentional sensed data, which
is relatively inefficient. In the same year, Mahdikhani et al.
[18] proposed a single-dimensional privacy-preserving range
query scheme in fog-based IoT, which achieves O(log3n)
communication efficiency. But the lower and upper boundaries
of the query ranges in their scheme must be the powers of 2,
which is inconvenient for arbitrary boundary query ranges. In
2021, Mahdikhani et al. [19] presented a privacy-preserving
range query scheme using reduced paths, which employs a
symmetric homomorphic encryption (SHE) to encrypt the re-
duced paths and achieves O(log2n) communication efficiency.
Although the scheme is computationally efficient in fog node
side, it is at the cost of a large amount of computational
overhead for IoT devices, which is not suitable for IIoT
applications.

Although several range query solutions have been proposed

for different scenarios, most of them just support the single-
dimensional range query, i.e., the query user can only query a
single kind of sensed data by one query request. In the indus-
trial field, different kinds of data is usually needed to make
intelligent decision. For example, in industrial environment, a
manager needs different kinds of data collected from a variety
of sensors, such as temperature, operation speed and power
consumption, to determine if the devices are running normally.
Consequently, in such scenarios, the query user has to launch
many query requests to achieve the multi-dimensional range
query, i.e., the query user needs to launch m query requests
to get m-dimensional sensed data. It not only wastes time
and bandwidth, but also results in the problem of response
delay. However, all the flaws mentioned above can be solved
by a multi-dimensional range query scheme. Therefore, in
the paper, we focus on the design of an efficient privacy-
preserving multi-dimensional range query scheme for edge-
supported IIoT.

B. Our Contributions

To achieve the multi-dimensional range query, we propose
a range division algorithm to process multi-dimensional query
ranges. Based on the algorithm, we propose an efficient
privacy-preserving multi-dimensional range query scheme for
edge-supported IIoT, called Edge-PPMRQ. Concretely, the
main contributions are as below:

1) A range division algorithm is designed to divide multi-
dimensional query ranges into the corresponding sub-
ranges. Then the sub-ranges are mapped into a group
of bloom filters, through which multi-dimensional query
ranges are integrated into one query request instead of
multiple query requests.

2) Based on the range division algorithm, the bloom filter
[20], and the OU cryptosystem [21], Edge-PPMRQ not
only realizes the privacy-preserving multi-dimensional
range query by one request, but also supports continuous,
discontinuous and arbitrary boundary range queries for
data of any dimension.

3) The security analysis shows that Edge-PPMRQ guaran-
tees the privacy of the query ranges, the query results and
the sensed data of IIoT devices.

4) Extensive experiments are performed to evaluate and
compare the performance of Edge-PPMRQ and related
schemes, and the results demonstrate that Edge-PPMRQ
is efficient in communication and computation.

C. Organization of the paper

The rest of this paper are arranged as follows. In section II,
the preliminary knowledge is introduced. Section III describes
our system model, security model and design goals. The
proposed privacy-preserving multi-dimensional range query
scheme for edge-supported IIoT and the corresponding secu-
rity analysis are described in section IV and V, respectively.
Section VI evaluates the communication and computation
performance of Edge-PPMRQ by comparing with other related
schemes. Finally, section VIII draws a conclusion.
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II. PRELIMINARIES

This section briefly introduces two preliminaries used in
Edge-PPMRQ, i.e., the bloom filter [20] and the OU cryp-
tosystem [21].

A. Bloom Filter

The bloom filter (BF ) [20] is a kind of data structure
composed of a n-bit binary vector and k independent hash
functions. It can be used to check whether an element is in a
set or not. To achieve this mission, all the bits of the vector
are set to 0 initially. For a set of integers I = {I1, I2, ..., Is},
k hash functions H1, H2, ...,Hk are called to compute
Hi(Ij) ∈ [1, n], where i ∈ [1, k] and j ∈ [1, s]. Then all the
Hi(Ij)-th bits in the vector are set to 1. Until now, set I is
mapped into the BF . To check if an element e is in set I , we
compute the values Hi(e), where i ∈ [1, k]. If all the Hi(e)-th
bits in the BF are 1, it can be confirmed that e is in the set I .
Otherwise, e is not in the set. Since only hash operations are
used in BF , it is very easy to be implemented on hardware
at a high speed. Compared with other methods solving the
same problem, BF costs much less storage space, inserting
time and query time. However, due to the fact that BF is
a probability-based data structure, there exists false positive
rate in BF . Fortunately, based on the relationship among
the false positive rate Pf , the vector’s length n, the number
of inserted elements s and the number of hash functions
k: Pf = (1 − (1 − 1

n )
ks)k, Pf can be constrained within

an acceptable range by adjusting n, s and k. In order to
understand BF better, an example is given here. Suppose that
a set I = {11, 12, ..., 20} is mapped into a 1000-bit length
bloom filter by using 3 hash functions H1, H2 and H3, whose
output ranges are all [1, 1000]. Firstly, the hashed values
H1(11), H2(11), H3(11), H1(12), H2(12), H3(12), ...,H1(20),
H2(20), H3(20) are computed. Then, the H1(11)-th, H2(11)-
th, H3(11)-th, ..., H3(20)-th bits in the vector are set to
1. When we check if 5 and 20 are the elements of I ,
H1(5), H2(5), H3(5), H1(20), H2(20), H3(20) are computed
to check the values of the corresponding positions in the
vector. Obviously, all the H1(20), H2(20), H3(20)-th bits are
1, while some or all of the H1(5), H2(5), H3(5)-th bits are
0. So, it can be confirmed that 20 is in I while 5 is not. For
more detailed information about BF , please refer to [20].

B. OU cryptosystem

The OU cryptosystem [21] is widely used in privacy preser-
vation applications because of its homomorphic properties. It
consists of three algorithms, i.e., key generation, encryption
and decryption. We describe the OU cryptosystem as below:

1) KeyGeneration: Given a security parameter κ, two large
prime numbers p and q with the same length κ are chosen.
A function L(x) is defined as L(x) = (x − 1)/p. Then,
n = p2q is calculated and g ∈ Z∗

n is chosen, which
satisfies that the order of gp−1 mod p2 is p. Additionally,
h is computed as h = gn mod n. Finally, the public key
and private key of the system are pk = (n, g, h, κ) and
sk = (p, q), respectively.

2) Encryption: Given a plaintext m, 0 ≤ m ≤ 2κ−1, a
random number r ∈ Zn is selected. Then, m can be
encrypted to the ciphertext C = E(m) = gmhr mod n.

3) Decryption: For the ciphertext C, Cp = Cp−1 mod p2 and
gp=gp−1 mod p2 are computed, and then the plaintext
can be recovered as m = L(Cp)/L(gp) mod p.

OU cryptosystem is a homomorphic encryption algorithm
supporting additive homomorphism and scalar multiplication.
Given two plaintext-ciphertext pairs (m1, C1) and (m2, C2),
where C1 = E(m1) and C2 = E(m2), C1 · C2 = E(m1) ·
E(m2) = E(m1 + m2) and Cm2

1 = E(m1 · m2), according
to the homomorphic properties.

III. MODELS AND DESIGN GOALS

In this section, we describe the system model, the security
model and design goals of Edge-PPMRQ.

A. System Model

There are three types of entities involved in Edge-PPMRQ,
i.e., a group of IIoT devices D = {D1, D2, ..., DN}, an edge
server and a query user, as shown in Fig. 1.

1) IIoT devices D = {D1, D2, ..., DN}: A group of N IIoT
sensors. They are deployed in industrial environment to
collect m-dimensional data, i.e., m types of data, such as
water temperature, pressure, power consumption, etc. For
each sensor, it first senses the data of the corresponding
dimension in the environment, and transfers the sensed
data to an edge server subsequently. In reality, the sensed
data is not always integers, e.g., 4.957. To handle range
query for such data, 4.957 can be transformed into an
integer 4957 by multiplying 1000. Therefore, all the
sensed data can be processed as integers. Without loss of
generality, we assume that in edge-PPMRQ, the sensed
data dk of the IIoT device Dk is an integer within the
range of [1, n].

2) Edge server: An edge server bridges IIoT devices and
a query user. It usually has more powerful capabilities
of storage, communication and computation than that
IIoT devices have, which can relieve the computational
cost of IIoT devices and respond to the query user at
an almost real-time manner. Besides, compared to cloud
servers, edge servers have lower cost and can be easily
deployed on a large scale. Moreover, the edge servers
are capable to process the sensed data in IIoT. Therefore,
the edge server is utilized in the model. During the
range query, it receives the query request from a query
user, and processes the sensed data from IIoT devices
accordingly to generate the ciphertexts of query results
C = {C1.C2, ..., Cm}. Finally, C are returned to the
query user.

3) Query user: A query user can directly send a multi-
dimensional range query request to the edge server. For
example, a query user requests a query for the number
of ith-dimensional IIoT devices whose sensed data is
within the range [Li, Ui], where 1 ≤ i ≤ m and
1 ≤ Li ≤ Ui ≤ n. After receiving the ciphertexts of
the query result |D′

i| from the edge server, where |D′
i| =
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2) Data request

3) Data response

Type ID TID = {TID1, TID2, ‧‧‧, TIDN} Di'={Dk | TIDk = λi, dk ∊ [Li, Ui]}

Fig. 1: System model of Edge-PPMRQ

Count(D′
i), i ∈ [1,m] and D′

i = {Dk|TIDk = λi,
dk ∈ [Li, Ui]}, the query user can recover the query result
|D′

i| by decrypting the ciphertexts.

B. Security model

In Edge-PPMRQ, we assume that all entities are honest-but-
curious, i.e., each entity performs the protocol honestly, but it
also wants to reveal the privacy of other entities. For example,
IIoT devices and the edge server are curious about the query
ranges [Li, Ui] and the corresponding query results |D′

i|, where
1 ≤ i ≤ m; the edge server and the query user are also curious
about the sensed data dk of IIoT device Dk. This paper focuses
on the problem of the privacy-preserving multi-dimensional
range query. Similar to the preview work, we assume that
there is no collusion among the entities. Meanwhile, we don’t
consider active attacks of external adversaries, which will be
discussed in future work.

C. Design goals

Based on the aforementioned system and security models, a
privacy-preserving multi-dimensional range query scheme for
edge-supported IIoT should achieve the following goals:

1) Multi-dimensional range query: Most of traditional range
query schemes only support the single-dimensional
range query through a query request, while the multi-
dimensional range query scheme can realize the query
for multi-dimensional data by only one query request.

2) Privacy preservation: The query ranges [Li, Ui] and the
query results |D′

i|, i ∈ [1,m], cannot be revealed by any
other entities except the query user. Besides, the edge
server and the query user can get neither IIoT devices’
plaintext of sensed data nor the fact that if the sensed
data of IIoT devices is within the query ranges.

3) Continuous, discontinuous and arbitrary-boundary range
query: Most of the traditional range query schemes only
support continuous range query, while in reality, the
query ranges may be discontinuous and have arbitrary
boundary. Consequently, it is very necessary for the multi-
dimensional range query schemes to support all the three
types of range queries.

4) Efficient communication and computation: Compared
to single-dimensional range query schemes, a multi-
dimensional range query scheme should achieve the
multi-dimensional range query more efficiently in terms

of communication and computation. Especially in edge-
supported IIoT, the communication overhead and compu-
tational costs of IIoT side should be reduced as much as
possible.

IV. THE PROPOSED SCHEME: EDGE-PPMRQ

In this section, it introduces a privacy-preserving multi-
dimensional range query scheme for edge-supported IIoT
(Edge-PPMRQ). Before the detailed description of the scheme,
our designed range division algorithm is first presented, which
is a crucial technology in Edge-PPMRQ. Besides, the notations
used in Edge-PPMRQ are listed in Table I.

TABLE I: Notations

Notation Description
N The number of IIoT devices
n The maximum value of IIoT devices’ sensed data
d The data in the example, d ∈ [1, n]
Dk, dk The k-th IIoT device and its sensed data, 1 ≤ k ≤ N
m The number of query dimensions
t The number of query sub-ranges
λi The index of i-th dimension, i ∈ [1,m]
λ The set of λi

TIDi The dimension identifier of Di’s sensed data
TID The set of TIDi

[Li, Ui] The query range for i-th dimension data
[lj , uj ] The j-th query sub-range
Q1, Q2 The set of all boundaries in query ranges.
D′

i The set of IIoT devices, whose sensed data is in [Li, Ui]
|D′

i| The number of elements in set D′
i

D′ The set of |D′
i|, i ∈ [1,m]

BFj The j-th bloom filter, j ∈ [1, t]
BF The set of bloom filters
Pf The false positive rate of BF
Eij(r) The cipher of λi’s tab corresponding to BFj , r ∈ {0, 1}
EM The set of ciphertext Eij(r)
Cij The λi’s counter corresponding to BFj

C The set of counter Cij

κ The security parameter to establish OU cryptosystem
pk, sk The public key and the private key of OU cryptosystem
s The number of elements mapped into bloom filters
sj The length of sub-range [lj , uj ]
p A large prime number
g A primitive root of Z∗

p
a, ga The query user’s private and public parameters
b, gb The IIoT devices’ private and public parameters
gab The key shared among query user and IIoT devices
h A public hash function
hk The keyed hash value of dk , i.e., h(gab∥dk)

A. Range division algorithm

In order to achieve the multi-dimensional range query,
multi-dimensional query ranges should be processed by the
range division algorithm as the following steps, which is also
shown in Algorithm 1.

1) Query boundary extraction: Suppose that [L1, U1],
[L2, U2], ..., and [Lm, Um] represent the query ranges
of m dimensions λ1, λ2, ..., and λm, respectively. For
∀i ∈ [1,m], 1 ≤ Li ≤ Ui ≤ n. Then, all the lower
boundaries and upper boundaries are extracted to a set
Q1 = {L1, U1, L2, U2, ..., Lm, Um}. After that, both the
minimum value 1 and maximum value n are inserted into
Q1. Finally, Q1 = {1, L1, U1, L2, U2, ..., Lm, Um, n}.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:32:38 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3149638, IEEE Internet of
Things Journal

5

2) Query boundary sort: In order to make the range division
easier, set Q1 is sorted from smallest to largest and the
repeated boundaries in Q1 are deleted. Finally, a sorted
set Q2 = {l1, l2, ..., lt, lt+1} is generated from Q1, where
l1 = 1, lt+1 = n, lj < lj+1 and j ∈ [1, t].

3) Query sub-ranges generation: According to Q2, t sub-
ranges are generated, i.e., [l1, l2], [l2, l3], ..., and [lt, lt+1].
For clarity, we denote the sub-ranges as [l1, u1], [l2, u2],
..., and [lt, ut]. Furthermore, the boundaries should be ad-
justed by adding 1, subtracting 1 or remaining unchanged
to get the final sub-ranges [l′1, u

′
1], [l

′
2, u

′
2], ..., and [l′t, u

′
t],

and the following two conditions should be satisfied for
all query ranges [Li, Ui], 1 ≤ i ≤ m:

a) ∃a, b, 1 ≤ a ≤ b ≤ t, [l′a, u
′
a] ∪ [l′a+1, u

′
a+1] ∪ ... ∪

[l′b, u
′
b] = [Li, Ui], where l′a = Li and u′

b = Ui.
b) ∀v, w ∈ [a, b], v ̸= w, [l′v, u

′
v] ∩ [l′w, u

′
w] = ∅.

Algorithm 1 Range division algorithm.

Input: Query ranges [L1, U1], [L2, U2], ..., [Lm, Um] of m di-
mensions λ1, λ2, ..., λm and maximum value of range n.

Output: the set of t query sub-ranges [l1, u1], [l2, u2], ...,
[lt, ut], i.e., Q2.

1: Initialize Ql, Qu, Q1, Q2 to empty arrays;
2: Insert 1 into Ql;
3: Insert n into Qu;
4: Insert 1, n into Q1;
5: for each i ∈ [1,m] do
6: insert Li into Ql;
7: insert Ui into Qu;
8: insert Li, Ui into Q1;
9: end for

10: // Ql = [1, L1, L2, ..., Lm];
11: // Qu = [n,U1, U2, ..., Um];
12: // Q1 = [1, n, L1, U1, L2, U2, ..., Lm, Um];
13: De-duplication (Q1);
14: Sort (Q1) from smallest to biggest;
15: // Q1 = [l1, l2, ..., lt, lt+1], where l1 = 1 and lt+1 = n;
16: for each j ∈ [1, t] do
17: extract lj , lj+1 from Q1;
18: generate range [lj , lj+1];
19: represent range [lj , lj+1] as [lj , uj ];
20: insert [lj , uj ] into Q2;
21: end for
22: for each j ∈ [1, t] do
23: extract [lj , uj ], [lj+1, uj+1] from Q2;
24: while [lj , uj ] ∩ [lj+1, uj+1] ̸= ∅ do
25: if uj ∈ Ql then
26: uj = uj − 1
27: end if
28: if uj ∈ Qu then
29: lj+1 = lj+1 + 1
30: end if
31: end while
32: insert [lj , uj ], [lj+1, uj+1] into Q2;
33: end for
34: return Q2.
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100

 [40,   60]

[20,   39]

[1,     19]

80

20

 [61,   80]

60

40

 [81, 100]

Fig. 2: An example of range division algorithm

To better understand the proposed range division algorithm,
we give a toy example here, which is also shown in Fig. 2.
For n = 100,m = 2 and two dimensions λ1 and λ2 with the
corresponding query ranges [20, 60] and [40, 80], respectively,
the query sub-ranges can be generated by the above range
division algorithm:

1) According to ranges [20, 60] and [40, 80], it gets set Q1 =
{1, 20, 60, 40, 80, 100}.

2) Based on Q1, it gets the sorted set Q2 =
{1, 20, 40, 60, 80, 100}.

3) Then it gets 5 sub-ranges [1, 20], [20, 40], [40, 60], [60, 80]
and [80, 100]. Moreover, the boundaries of the sub-
ranges are adjusted to generate the final sub-ranges
[1, 19], [20, 39], [40, 60], [61, 80] and [81, 100]. From the
sub-ranges, we can see that:

a) [20, 39] ∪ [40, 60] = [20, 60] and [40, 60] ∪ [61, 80] =
[40, 80].

b) [20, 39] ∩ [40, 60] = ∅ and [40, 60] ∩ [61, 80] = ∅.
It is worth noting that different types of data may locate in

ranges with great distance, which exist very small or even
no overlap. However, different kinds of data, such as the
temperature and pressure, have different accuracy require-
ments. When the sensed data is transformed into integers
based on the aforementioned method, the corresponding ranges
may have some overlap. For example, the query ranges of
temperature values and pressure values are [120.5, 200.5] and
[1000, 1800], respectively. Then, the ranges will be trans-
formed into [1205, 2005] and [1000, 1800] and they have a
big overlap [1205, 1800], which is helpful for our scheme.
Therefore, in this situation, our scheme can also achieve
efficient communication performance.

B. Description of Edge-PPMRQ

Our privacy-preserving multi-dimensional range query
scheme for edge-supported IIoT (Edge-PPMRQ) is described
in detail as below.

1) System initialization: To initialize the system, the service
provider selects a hash function h, a large prime number p, a
primitive root g ∈ Z∗

p and a random number b ∈ Z∗
p . Then,

gb mod p can be computed accordingly. Finally, the service
provider publishes the parameters h, p, g and gb. After that,
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the service provider deploys an edge server and various types
of IIoT devices to the target industrial environment.

2) User query request generation: The query user launches
a query for data of m dimensions λ = {λ1, λ2, ..., λm}, i.e.,
“How many IIoT devices of dimension λi, whose sensed data
dk is within range [Li, Ui], where 1 ≤ i ≤ m and 1 ≤ k ≤
N?” In other words, the query user would like to figure out:
For ∀i ∈ [1,m] and k ∈ [1, N ], |D′

i| = Count(D′
i), where

D′
i = {Dk|TIDk = λi, dk ∈ [Li, Ui]}. To generate the query

request in a privacy-preserving way, the query user performs
the following steps.

Step 1: Given a security parameter κ, the public and private
key pair (pk, sk) of OU cryptosystem is generated by the key
generation algorithm. Besides, a random number a ∈ Z∗

p is
chosen to compute ga mod p and gab = (gb)a mod p.

Step 2: For m query ranges [L1, U1], [L2, U2], ..., and
[Lm, Um] corresponding to dimensions λ1, λ2, ..., and λm,
respectively, the range division algorithm is called to output t
query sub-ranges [l1, u1], [l2, u2], ..., and [lt, ut].

Step 3: A group of t bloom filters with n-bit vectors and k
hash functions are chosen. Here, for each bloom filter, s, i.e.
the number of mapped elements, should satisfy s ≤ ⌈ n

logn⌉
and k should meet k = n

s ln2 to ensure the false positive rate
Pf = (1− (1− 1

n )
ks)k ≈ (1− e−

ks
n )k = n−ln2.

Step 4: For each sub-range [lj , uj ], 1 <j< t, all integers
between lj and uj are mapped into BFj . Note that, we don’t
map the integer value d ∈ [lj , uj ] itself but its keyed hash
value h(gab∥d) into BFj . For sub-range [li, ui] with length si,
where 1 ≤ i ≤ t, if si > ⌈ n

logn⌉, we divide it into some shorter
sub-ranges to ensure the false positive rate. For simplicity, we
assume that the length si is smaller than ⌈ n

logn⌉.
Step 5: For dimension λi, the query user constructs a query

set {BFj , Eij(r), Cij}, where i ∈ [1,m], j ∈ [1, t] and r ∈
{0, 1}. BFj is the bloom filter which the j-th sub-range [lj , uj ]
is mapped into. Eij(r) is the OU ciphertext of r, where r is a
label to indicate the relationship between the i-th dimension λi

and the j-th bloom filter BFj . Concretely, if the j-th sub-range
[lj , uj ] (mapped into BFj) is a sub-set of the dimension λi’s
query range [Li, Ui], the r is labeled as 1 (Eij(r) = E(1));
otherwise, r is set as 0 (Eij(r) = E(0)). Cij is a counter with
initial value 0, which is used to record how many IIoT devices
of dimension λi, whose sensed data is in the j-th sub-range
[lj , uj ]. Finally, we get:

EM =


E11(r) E12(r) · · · E1t(r)
E21(r) E22(r) · · · E2t(r)

...
...

. . .
...

Em1(r) Em2(r) · · · Emt(r)

,

C =


C11 C12 · · · C1t

C21 C22 · · · C2t

...
...

. . .
...

Cm1 Cm2 · · · Cmt

 .

Step 6: As shown in Fig. 3, the query user constructs
a query request {λ,BF,EM,C, ga mod p}, where λ =
{λ1, λ2, ..., λm} and BF = {BF1, BF2, ..., BFt}. Then the

BF1

BF2

λ1 λ2

E11(r), C11=0

E12(r), C12=0

E1t(r), C1t=0

E21(r), C21=0

E22(r), C22=0

E2t(r), C2t=0

...

...

...

.                

.

.

.                

.

.

.                

.

.

.                

.

.

.                

.

.

.                

.

.

λm

Em1(r), Cm1=0

Em2(r), Cm2=0

Emt(r), Cmt=0

.                

.

.

...

...

...

...

...

BFt

Fig. 3: Query request generation

BF1: [1,  19]

BF2: [20, 39]

λ1: [20, 60] λ2: [40, 80]

E11(0), C11=0

E12(1), C12=0

E14(0), C14=0

E21(0), C21=0

E22(0), C22=0

E24(1), C24=0

...

...

...BF4: [61, 80]

BF3: [40, 60] ...

BF5: [81, 100] ...

E13(1), C13=0 E23(1), C23=0

E15(0), C15=0 E25(0), C25=0

Fig. 4: An example of query request

query request is sent to the edge server. Accordingly, the edge
server broadcasts {λ, ga mod p} to all IIoT devices.

Based on the example given in range division algorithm,
the concrete process of the user query request generation
algorithm is shown as below:

1) For the 5 sub-ranges [1, 19], [20, 39], [40, 60], [61, 80]
and [81, 100] generated in the example of IV-A, all
the values in the sub-ranges are mapped into 5 bloom
filters BF1, BF2, BF3, BF4 and BF5, respectively. For
instance, all the values 1, 2, ..., and 19 in the sub-range
[1, 19] are mapped into BF1.

2) For the query range [20, 60] of dimension λ1, only
[20, 39] and [40, 60] are its sub-sets. Therefore,
only E12(r) and E13(r) are 1. Then, the query
user constructs a query set {BFj , E1j(r), C1j},
j ∈ [1, 5] and r ∈ {0, 1}, i.e., {{BF1, BF2, BF3,
BF4, BF5}, {E11(0), E12(1), E13(1), E14(0), E15(0)},
{C11, C12, C13, C14, C15}}. Similarly, for the query
range [40, 80] of dimension λ2, the query user can also
generate a query set correspondingly. Finally, the query
request, i.e., two query sets, is generated as shown in
Fig. 4.

3) IIoT devices’ data response: When receiving the data
request {λ, ga mod p} forwarded by the edge server, each
IIoT device Dk ∈ D checks if its type ID TIDk is in the
queried dimensions λ = {λ1, λ2, ..., λm}. If TIDk doesn’t
belong to λ, Dk discards the data request. Otherwise, Dk

computes the shared key gab mod p by using b and ga mod
p. Then, Dk computes the keyed hash value hk = h(gab∥dk).
Finally, {TIDk, hk} is responded to the edge server via a
secure channel.

4) Edge server’s data aggregation: Upon receiving all the
responses {TIDk, hk}, k ∈ [1, N ] from IIoT devices, the edge
server performs the following steps to aggregate the data.

Step 1: Edge server takes TIDk from {TIDk, hk} and find
the corresponding query dimension λi from λ, where 1 ≤ i ≤
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m.

Step 2: Edge server takes hk from {TIDk, hk} and checks
if hk is in BFj , where BFj ∈ BF and j ∈ [1, t]. If so, the
counter Cij increases by 1. Otherwise, Cij keeps unchanged.

Step 3: After the above processes, the edge server aggre-
gates the data as Ci =

∏t
j=1(Eij(r)

Cij ), where 1 ≤ i ≤ m,
and responses the results C = {C1, C2, ..., Cm} to the query
user.

Following the last example in section IV-B2, suppose that
the data responses from IIoT devices are {λ1, h(g

ab∥5)},
{λ1, h(g

ab∥20)}, {λ1, h(g
ab∥30)}, {λ2, h(g

ab∥35)},
{λ2, h(g

ab∥45)}, {λ1, h(g
ab∥50)}, {λ1, h(g

ab∥55)},
{λ2, h(g

ab∥55)}, {λ2, h(g
ab∥65)}, {λ2, h(g

ab∥90)}. The
edge server performs the steps as below to aggregate the
sensed data.

Step 1: When receiving the data responses, the edge server
classifies the dimension λ1’s sensed data h(gab∥5), h(gab∥20),
h(gab∥30), h(gab∥50) and h(gab∥55), and λ2’s sensed data
h(gab∥35), h(gab∥45), h(gab∥55), h(gab∥65) and h(gab∥90).

Step 2: It checks the bloom filter which the sensed data
belongs to and increases the corresponding counter, e.g.,
h(gab∥5) of λ1 is checked in BF1, so the corresponding
counter C11 increases by 1. Finally, the counters C11 =
1, C12 = 2, C13 = 2, C14 = 0, C15 = 0, C21 = 0, C22 =
1, C23 = 2, C24 = 1 and C25 = 1.

Step 3: According to E11(0), E12(1), E13(1), E14(0), E15(0),
E21(0), E22(1), E23(1), E24(0) and E25(0) and counters, the
data is aggregated as:

C1 =
5∏

j=1

(E1j(r)
C1j )

= E11(0)
1 · E12(1)

2 · E13(1)
2 · E14(0)

0 · E15(0)
0

= E11(0) · E12(2) · E13(2) · 1 · 1
= E(4)

C2 =
5∏

j=1

(E2j(r)
C2j )

= E21(0)
0 · E22(0)

1 · E23(1)
2 · E24(1)

1 · E25(0)
1

= 1 · E22(0) · E23(2) · E24(1) · E25(0)

= E(3)

Finally, C = {C1, C2} is replied to the query user.

5) Response recovery: When receiving C = {C1, C2,
..., Cm} from the edge server, the query user recovers the
corresponding query results D′ = {|D′

1|, |D′
2|, ..., |D′

m|} by
decrypting C as

|D′
i| = Count(D′

i) = Dec(Ci), 1 ≤ i ≤ m

The correctness of the result is shown as

Dec(Ci) = Dec(
t∏

j=1

(Eij(r)
Cij ))

= Dec(
∏

BFj∈[Li,Ui]

(Eij(1)
Cij ) ·

∏
BFj /∈[Li,Ui]

(Eij(0)
Cij ))

= Dec(E(
∑

BFj∈[Li,Ui]

(1 · Cij) +
∑

BFj /∈[Li,Ui]

(0 · Cij)))

= Dec(E(
∑

BFj∈[Li,Ui]

Cij))

=
∑

BFj∈[Li,Ui]

Cij

= |D′
i|.

Following the example in section IV-B4, when receiving
C = {C1, C2}, the query user can recover the query result as:

|D′
1| = Count(D′

1) = Dec(C1) = 4.

|D′
2| = Count(D′

2) = Dec(C2) = 3.

Therefore, the query user knows that there are 4 sensors of
dimension λ1, whose sensed data is in the query range [20, 60]
and 3 sensors of dimension λ2, whose sensed data is in the
range [40, 80].

V. SECURITY ANALYSIS

In this section, we analyze the security features of Edge-
PPMRQ and prove that it achieves the aforementioned secu-
rity requirements. We especially focus on privacy-preserving
properties as below.

1) Query ranges [Li, Ui], i ∈ [1,m] are privacy-preserving
in Edge-PPMRQ: In order to achieve multi-dimensional
range query, the m-dimensional query ranges are divided
into t sub-ranges by the proposed range division algo-
rithm. Then, the sub-ranges are mapped into t bloom
filters to generate the query request. Subsequently, the
query user transfers the query request to the edge server
via a public channel. Through the channel, an IIoT device
Dk can eavesdrop the query request. At the same time,
Dk ∈ D owns shared key gab mod p. Therefore, for
∀d ∈ [1, n], Dk can compute all keyed hash values
h(gab∥d) and check the bloom filter which h(gab∥d)
belongs to. In such way, Dk can recover the sub-range
[lj , uj ] which is mapped into BFj , j ∈ [1, t]. However,
Dk cannot distinguish the ciphertexts of 0 and 1 because
OU cryptosystem is semantically secure [21], i.e., it
cannot know the real value of r in Eij(r). As a result, Dk

cannot confirm if the query sub-range [lj , uj ] is a sub-
set of the query range [Li, Ui]. Due to the same reason,
even though Dk knows sub-range [lj , uj ] is mapped
into BFj , Dk still cannot get any information about
the query range [Li, Ui] of dimension λi. Besides, the
edge server can neither get shared key gab mod p nor
distinguish the ciphertexts of 0 and 1. Therefore, it cannot
get any information about [lj , uj ] and [Li, Ui]. Based on
above analysis, the query ranges [Li, Ui] of dimension λi,
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i ∈ [1,m] are privacy-preserving for IIoT devices and the
edge server in Edge-PPMRQ.

2) The query result D′ = {|D′
1|, |D′

2|, ..., |D′
m|} is also

privacy-preserving in Edge-PPMRQ: For the edge server,
it receives the query request {λ,BF,EM,C, ga mod p}
from the query user and the data response {TIDk, hk},
k ∈ [1, N ], from IIoT devices. Even though it can
know the bloom filter which the keyed hash value hk =
h(gab∥dk) belongs to, it cannot confirm if a sub-range
[lj , uj ], which is mapped into the bloom filter BFj , is
the sub-set of the query range [Li, Ui]. The reason is
that it cannot distinguish the ciphertexts of 0 and 1,
according to the semantic security of OU cryptosystem
[21]. Therefore, the edge server cannot confirm if the
sensed data dk of IIoT device Dk is in the query range
[Li, Ui] of dimension λi, i ∈ [1,m], i.e., it has no idea
about that how many IIoT devices whose sensed data is
in range [Li, Ui]. In other words, the query result D′ is
privacy-preserving for the edge server. Besides, each IIoT
device Dk ∈ D owns gab mod p and can compute all
keyed hash values of data in [1, n]. However, every IIoT
device transfers its data response via a secure channel.
As a result, Dk’s sensed data dk cannot be recovered
by other IIoT devices. At the same time, Eij(r) is also
indistinguishable for IIoT devices. Thus, IIoT devices
have no way to know the query result D′. Based on
the above analysis, we prove that the query result D′ is
privacy-preserving for the edge server and IIoT devices.

3) Plaintext data dk of IIoT device Dk is also privacy-
preserving in Edge-PPMRQ: For the edge server, it can
get ga mod p from the query request. However, b is the
private parameter of IIoT devices. Therefore, the edge
server cannot compute gab mod p. In other words, it
cannot recover dk from hk = h(gab∥dk). Similar to
some previous work, in our model, the IIoT devices send
their data response via a secure channel. As a result,
Dk’s sensed data dk cannot be recovered by other IIoT
devices. Likewise, the query user also cannot recover the
sensed data of IIoT devices. Based on the above analysis,
the plaintext data dk of IIoT device Dk is also privacy-
preserving.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Edge-
PPMRQ and three related work, i.e., BFPRQ [17], CEPRQ
[18] and URPRQ [19] from the aspects of communication
overhead and computational cost. Here, it should be noted
that Edge-PPMRQ and BFPRQ [17] are based on OU cryp-
tosystem [21] and Paillier cryptosystem [22], respectively,
while CEPRQ [18] and URPRQ [19] are based on their own
constructed homomorphic encryption SHE. All the schemes
are simulated with Python 3.8, Gmpy 2 and Math library.
The experiments are carried out on an Intel(R) Core (TM) i5-
7400 CPU @3.00GHz with Windows 10 system and 24GB
RAM. To ensure the fairness, we keep the false positive
rate of bloom filters in BFPRQ [17] and Edge-PPMRQ as
n−ln2. Besides, we simulate m-dimensional range query of

TABLE II: The parameters setting and notations

Parameter Value
κ κ = 512, |p| = |q| = κ
h The public hash function SHA-256
k The number of hash functions k= logn×ln2
N The number of single dimension’s IIoT devices. N=1000
|λi| The length of dimension index with the length of 6 bits
m The number of dimensions in the query request
b logn
|Epaillier| The length of paillier ciphertext
|ESHE | The length of SHE ciphertext
|EOU | The length of OU ciphertext
|H| The length of SHA-256’s output

BFPRQ [17], CEPRQ [18] and URPRQ [19] by performing
m single-dimensional query requests since they don’t support
multi-dimensional range query. Furthermore, we evaluate and
compare the communication overhead and computational cost
of these four schemes in two conditions: (1) n is varying from
210 to 220, while m is fixed at 16; (2) m is varying from 5 to
55, while n is fixed at 220. In addition, the detailed parameters
setting and notations used in the comparison are shown in
Table II.

A. Communication overhead

In this section, we compare the communication overhead of
BFPRQ [17], CEPRQ [18], URPRQ [19] and Edge-PPMRQ.
The communication overhead between the edge server and
the query user includes both the query request and the query
response. Besides, the communication overhead between the
edge server and IIoT devices consists of the data request and
the data response.

For condition 1, we calculate the communication overhead
of the four schemes between the edge server and the query
user, and between the edge server and IIoT devces, which
are respectively shown in table III and table IV. In order to
compare them more intuitively, Fig. 5(a) and Fig. 5(b) depict
the communication overhead in condition 1. From the Fig.
5(a), we can see that the communication overhead between
the edge server and the query user in Edge-PPMRQ keeps
very low with n varying from 210 to 220, while in BFPRQ
[17], CEPRQ [18] and URPRQ [19], they grow rapidly. Fig.
5(b) shows the communication overhead comparison between
the edge server and IIoT devices, from which we can know
that both Edge-PPMRQ and BFPRQ [17] are equally efficient
and perform significantly better than CEPRQ [18] and URPRQ
[19].

For condition 2, we also analyze the communication over-
head of the four schemes between the edge server and the
query user, and between the edge server and IIoT devices,
which are respectively shown in table V and table VI. Simi-
larly, Fig. 5(c) and Fig. 5(d) intuitively present the communi-
cation overhead of the four schemes in condition 2. From Fig.
5(c), the communication overhead between the edge server
and the query user of the four schemes all show a linear
growth trend, but the communication cost curve of Edge-
PPMRQ is almost flat with m varying from 5 to 55, while
the slopes of other schemes, BFPRQ [17], CEPRQ [18] and
URPRQ [19], are much greater than that of Edge-PPMRQ.
The reason is that Edge-PPMRQ achieves multi-dimensional
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TABLE III: Communication overhead between the edge server and the query user with varying n

Schemes Query request (bits) Query result (bits) Total overhead (bits)
BFPRQ m · [b · (n+ |Epaillier|) + |λi|)] m · (|Epaillier|+ |λi|) 16 · b · n+ 32768 · b+ 32864

CEPRQ m · [(2 + 2·b3+3·b2−11·b
6

) · |ESHE |+ |λi|] m · (|ESHE |+ |λi|) 2560
3

· b4 + 6400
3

· b3 + 10240
3

· b2 + 124160
3

· b+ 46176
URPRQ m · [(b− 1) · (b+ 2) · |ESHE |+ |λi|] m · (|ESHE |+ |λi|) 2560 · b3 + 2560 · b2 + 96
Edge-PPMRQ b · (n+m · |EOU |) +m · |λi| m · (|EOU |+ |λi|) b · n+ 24576× b+ 24672

TABLE IV: Communication overhead between the edge server and IIoT devices with varying n

Schemes Data request (bits) Data response (bits) Total overhead (bits)
BFPRQ m · |λi| m ·N · (|H|+ |λi|) 4192096

CEPRQ m · [(2 + 2·b3+3·b2−11·b
6

) · |ESHE |+ |λi|] m ·N · (|ESHE |+ |λi|) 2560
3

· b4 + 6400
3

· b3 + 10240
3

· b2 + 124160
3

· b+ 46176
URPRQ m · [(b− 1) · (b+ 2) · |ESHE |+ |λi|] m ·N · (|ESHE |+ |λi|) 2560 · b3 + 2560 · b2 + 96
Edge-PPMRQ m · |λi| m ·N · (|H|+ |λi|) 4192096
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(d) Between the edge server and
IIoT devices with varying m

Fig. 5: Comparison of communication overhead

range query by a query request, which saves a large number of
communication costs for multi-dimensional query range. Fig.
5(d) depicts the communication overhead between the edge
server and IIoT devices. From the figure, we find that the
communication overhead in both Edge-PPMRQ and BFPRQ
[17] keeps efficient, but the communication costs of CEPRQ
[18] and URPRQ [19] are almost 8 times and 50 times of
that in Edge-PPMRQ, respectively. This is because in CEPRQ
[18] and URPRQ [19], IIoT devices not only receive the
query request forwarded by the edge server, but also send
ciphertext response back, which results in a large amount of
communication overhead, while IIoT devices of Edge-PPMRQ
and BFPRQ [17] only send keyed hash values h(gab∥dk) and
dimension index λi to the edge server, which are far shorter
than ciphertext.

Based on the above comparisons, we can conclude that
Edge-PPMRQ is remarkably communication-efficient.

B. Computational cost
In this section, we compare the execution time of the query

user, IIoT devices and the edge server with varying n and m,
respectively, and the experiment comparison results are taken
from the average value of 10 times simulations. Our scheme
uses OU cryptosystem, while some of the compared schemes
utilize Paillier cryptosystem. Therefore, we give the time cost
comparison between Paillier and OU in Table VII. From the
table, we can see that OU cryptosystem is more efficient than
Paillier cryptosystem.

Fig. 6 shows the average computational time of BFPRQ
[17], CEPRQ [18], URPRQ [19] and Edge-PPMRQ in con-

dition 1. Specifically, Fig. 6(a) illustrates the execution time
of the query user, including user query request generation and
response recovery. From the figure, we can see that Edge-
PPMRQ is really efficient, while the execution time of BFPRQ
[17], CEPRQ [18] and URPRQ [19] increases rapidly with n
varying from 210 to 220. For example, when n = 220, the
execution time of BFPRQ [17] and CEPRQ [18] are 4 times
and 7 times of that in Edge-PPMRQ, respectively. URPRQ
[19] also obviously consumes more execution time than Edge-
PPMRQ. The reason for the excellent performance of Edge-
PPMRQ is that Edge-PPMRQ maps multiple query ranges into
a group of bloom filters, so that the range query requests
for multiple dimensions can be realized by only one query
request, while in other schemes, the query user has to send
multiple query requests to achieve the same purpose. Fig.
6(b) illustrates the execution time of IIoT devices. It shows
that in URPRQ [19], IIoT devices undertake considerable
computational costs, while the execution time of BFPRQ [17],
CEPRQ [18] and Edge-PPMRQ is negligible. Furthermore,
a sub-figure in Fig. 6(b) is given to better illustrate the
comparison among BFPRQ [17], CEPRQ [18] and Edge-
PPMRQ. From the sub-figure, we can see that the execution
time of CEPRQ [18] also grows more rapidly than that of
Edge-PPMRQ and BFPRQ [17] increases. The reason for the
result is that in CEPRQ [18] and URPRQ [19], IIoT devices
perform a lot of time-consuming operations, i.e., homomorphic
addition and homomorphic xor, while in Edge-PPMRQ and
BFPRQ [17], IIoT devices only compute the keyed hash value,
which is much more efficient than homomorphic operations.
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TABLE V: Communication overhead between the edge server and the query user

Schemes Query request (bits) Query result (bits) Total overhead (bits)
BFPRQ m · [b · (n+ |Epaillier|) + |λi|)] m · (|Epaillier|+ |λi|) 21014534 ·m
CEPRQ m · [(2 + 2·b3+3·b2−11·b

6
) · |ESHE |+ |λi|] m · (|ESHE |+ |λi|) 9518886 ·m

URPRQ m · [(b− 1) · (b+ 2) · |ESHE |+ |λi|] m · (|ESHE |+ |λi|) 858124 ·m
Edge-PPMRQ b · (n+m · |EOU |) +m · |λi| m · (|EOU |+ |λi|) 30726 ·m+ 20971520

TABLE VI: Communication overhead between the edge server and the IIoT devices

Schemes Data request (bits) Data response (bits) Total overhead (bits)
BFPRQ m · |λi| m ·N · (|H|+ |λi|) 262000 ·m
CEPRQ m · [(2 + 2·b3+3·b2−11·b

6
) · |ESHE |+ |λi|] m ·N · (|ESHE |+ |λi|) 12881520 ·m

URPRQ m · [(b− 1) · (b+ 2) · |ESHE |+ |λi|] m ·N · (|ESHE |+ |λi|) 2048000 ·m
Edge-PPMRQ m · |λi| m ·N · (|H|+ |λi|) 262000 ·m
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Fig. 7: Computational time cost comparison with varAying m

TABLE VII: Comparison between Paillier and OU

Algorithm/Operations Encryption(ms) Decryption(ms) Homomorphic Addition(ms) Scalar Multiplication(ms)
Paillier 12.4 12.4 0.023 0.096
Okamoto Uchiyama 10.5 1.8 0.012 0.062

TABLE VIII: Functional comparison

Schemes Edge-PPMRQ BFPRQ [17] CEPRQ [18] URPRQ [19]
Multi-dimension

√
× × ×

Discotinuous range
√ √

×
√

Arbitrary boundary range
√ √

×
√

Counting function
√ √ √ √

Sum function × ×
√ √

Suitability for IIoT applications
√ √

× ×
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Fig. 6(c) indicates the execution time of the edge server. From
the figure, we can observe that Edge-PPMRQ, CEPRQ [18]
and URPRQ [19] are more efficient than BFPRQ [17], and
Edge-PPMRQ performs better than CEPRQ [18] when n is
bigger than 215. Although the computational cost of the edge
server in URPRQ [19] keeps very low, it is at the cost of
a large amount of computational overhead for IIoT devices
according to Fig. 6(b).

Fig. 7 depicts the average computational time of BFPRQ
[17], CEPRQ [18], URPRQ [19] and Edge-PPMRQ in con-
dition 2. Specifically, Fig. 7(a) shows the execution time of
the query user, including two parts, i.e., user query request
generation and response recovery. We can find that Edge-
PPMRQ costs nearly constant execution time, which is ap-
parently efficient than BFPRQ [17], CEPRQ [18] and URPRQ
[19]. This is because the query user in Edge-PPMRQ performs
less homomorphic operations than BFPRQ [17], CEPRQ [18]
and URPRQ [19]. Fig. 7(b) depicts IIoT devices’ data response
time, which shows that both Edge-PPMRQ and BFPRQ [17]
are more efficient than CEPRQ [18] and URPRQ [19]. The
reason is that IIoT devices in Edge-PPMRQ and BFPRQ [17]
only need compute keyed hash values H(gab∥di), while both
in CEPRQ [18] and URPRQ [19], IIoT devices need perform a
large number of homomorphic multiplication operations. Fig.
7(c) presents the data aggregation time cost of the edge server,
which shows that Edge-PPMRQ performs better than BFPRQ
[17] and CEPRQ [18] since in Edge-PPMRQ, the number of
homomorphic operations are less than that of BFPRQ [17]
and CEPRQ [18]. Obviously, URPRQ [19] consumes the least
computational time. The reason is that the most computational
cost is afforded by IIoT devices, and the edge server only
performs homomorphic addition operations.

C. Functional comparison

Based on above introduction and analysis, a functional
comparison of Edge-PPMRQ and related schemes is given in
table VIII.

From a functional point of view, Edge-PPMRQ supports the
functions of multi-dimensional, discontinuous and arbitrary-
boundary range query, while BFPRQ [17], CEPRQ [18] and
URPRQ [19] cannot support multi-dimensional range query.
Additionally, CEPRQ [18] also cannot support discontinuous
range query or arbitrary-boundary range query. Moreover, with
respect to query functions, all the 4 schemes support the
Counting function, i.e., the query user can get the number of
the sensed data located in the query range. Besides, CEPRQ
and URPRQ can also achieve sum function, i.e., the query
user can obtain the sum of the sensed data within the query
range.

From a real application perspective, edge/fog computing
is introduced for decreasing the load of IIoT devices and
reducing the delay of service. Therefore, in edge/fog-supported
IIoT applications, some tasks of IIoT devices can be migrated
to edge server/fog node, which not only remarkably extends
the life period of IIoT devices, but also provides nearly real-
time service. According to the comparison in the Fig. 5, Fig.
6 and Fig. 7, the costs of IIoT devices in Edge-PPMRQ and

BFPRQ [17] evidently keeps very low, while in CEPRQ [18]
and URPRQ [19], IIoT devices process a larger proportion
of communication and computational tasks. Therefore, Edge-
PPMRQ and BFPRQ [17] are considerably suitable for IIoT
applications.

In a word, Edge-PPMRQ not only is functionally powerful
for multi-dimensional, discontinuous and arbitrary boundary
range queries, but also is significantly suitable for IIIoT
applications.

VII. CONCLUSION AND FUTURE WORK

Based on our proposed range division algorithm, this paper
has designed a privacy-preserving multi-dimensional range
query scheme for edge-supported IIoT. The scheme achieves
the function of multi-dimensional range query, i.e. a user can
query different types of data at once, which is very suitable for
the real application of IIoT environment. Meanwhile, it also
supports the continuous, discontinuous and arbitrary-boundary
range queries. The security analysis proves that Edge-PPMRQ
is privacy-preserving, i.e. the query ranges and the query
results cannot be revealed by any entities except the query user,
and the sensed data of each IIoT device cannot be recovered by
other parties. Furthermore, a large number of experiments are
conducted to evaluate and compare the performance of Edge-
PPMRQ and other related work, and the results show that
Edge-PPMRQ is really communication and computationally
efficient. Comprehensively, Edge-PPMRQ achieves expected
goals in aspects of functions, privacy preservation and effi-
ciency.

In future work, we plan to study more efficient range
query schemes for various functions, privacy requirements and
multiple application scenarios, e.g., multi-user range query
scheme.
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